Computer-Aided Drug-Design Platform using PyMOL

Overview

Many powerful standalone tools for computer-aided drug discovery have been developed in academia providing insight into protein-ligand interactions. As programs are developed by various research groups, a consistent user-friendly graphical working environment combining computational techniques such as docking, scoring, molecular dynamics simulations, and free energy calculations is needed.

Utilizing PyMOL we have developed such a graphical user interface incorporating individual academic packages designed for protein preparation (AMBER package and Reduce), molecular mechanics applications (AMBER package), docking and scoring (AutoDock Vina and SLIDE), and QSAR (Symposar and Raptor). In addition to amassing several computational tools under one interface, the computational platform also provides a user-friendly combination of different programs. For example, utilizing a molecular dynamics (MD) simulation performed with AMBER as input for ensemble docking with AutoDock Vina.

The overarching goal of this work was to provide a computational platform that facilitates medicinal chemists, many who are not experts in computational methodologies, to utilize several common computational techniques germane to drug discovery. Furthermore, our software is open source and is aimed to initiate collaborative efforts among computational researchers to combine other open source computational methods under a single, easily understandable graphical user interface.

For more details please see:

Lill, M.A.; Danielson, M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des. 78, 2010, 1748-1759.

Please, feel free to use and modify our plugins. Please, contact us (mlill@purdue.edu, mldaniel@purdue.edu) if you find bugs and have recommendation for improved versions of our plugins.